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Research Topics in Nuclear Physics Group

Study nuclear matter properties at
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Heavy lon Collider at Brookhaven
National Lab, New York, USA.

J ("! Tirget

— PHOBOS) N 12:00 o’clock AnDy

10:00 o*clock

® .-'
2:01[9.! g‘k-

| PHEN,

1990’s to 2030

6/14/2019 X. He @ MEPhI



Research Topics in Nuclear Physics Group

Study nuclear matter properties at Explore the inner structures of nucleon
extreme high temperature and density and nuclei by colliding polarized
in a form of quark-gluon plasma by electrons and protons (and nuclei) in the
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Explore the inner structures of nucleon
and nuclei by colliding polarized
electrons and protons (and nuclei) in the
to-be-built Electron and lon Collider.
GSU group is developing a key detector
technology for these experiments.
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Understand the connection
between radiation (cosmic rays)
and life on earth in broad spectra.
GSU group is developing novel,
portable and low-cost cosmic ray
detectors for simultaneous
measurements of cosmic ray flux
variations at global scale.

Cosmic ray flux measurement at global scale and the assocdiated applications

Since 2003
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A Few Interesting Studies
Related to Cosmic Ray
Applications



Cosmic Rays in the Earth’s
Atmosphere and Underground

Earliest Study on Records

By Lev |. Dorman

14.5. Possible influence of solar activity/cosmic ray intensity
long term variations on wheat prices (through weather changes)

in medieval England

As we mentioned in Section 14.1, Herschel (1801) was the first who paid attention to
an evident correlation between the observed number of sunspots and the state of the
wheat market, based on a series of wheat prices published by Smith (M1776). Herschel
showed that five prolonged periods of few sunspots correlated with costly wheat. The
next scientist in this field was the well known English economist and logician William
Stanley Jevons (1875), one of the creators of Neoclassical Economic Theory. He
directed his attention to the first part of the data, published later in the first volume of a
series of monographs by Rogers (M1887). In this volume were presented wheat prices
over 140 years, from 1259 up to 1400. Jevons (1875) discovered that the time intervals

between high prices were close to 10—-11 years. The coincidence of these intervals with
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Wheat Price Variation in Correlation with Solar Activity
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Figure 1. Fourier speciral analysis of the time varia-

tion of the total number of marine-animal genera

living at any particular time during the past 542 mil-

lion years. The prominent peak corresponding to

a period of 140 Myr is confidently attributed to the
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* Discovered by Victor Hess in 1912 during a balloon flight with friends.
- e Vicrtor Hess received Nobel Prize in 1936 for this discovery.
C OS m Ic * The study of cosmic ray particles in 1930’s and 40’s inspired and built the
foundation of exploring the colorful subatomic world.
e Still today, possibly in many years to come, measurements of the most
energetic cosmic ray showers are very active around the world, e.g., P. Auger

LARSO, etc. for understanding the origin of these particles and their
implications to the evolution of our universe.
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Created 2/2019

Applications of Cosmic Ray Flux Measurements

Space
weather
monitoring
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properties
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It has been well known for more than half a century
that solar activity has a strong influence of cosmic
ray flux reaching to the earch (anti-correlation), one
could use cosmic ray flux measured at the surface of
the earth to monitor the space weather and solar
activity.

Since most of the cosmic ray showers are occurring
between the upper troposphere and lower
stratosphere, cosmic ray flux measurement at the
earth surface around the world simultaneously could
help to determine the dynamical changes of air density
in this region at global scape in real-time.

Secondary cosmic ray shower particles (electrons, gamma
rays, muons, neutrons) are ionizing the atmospheric air
molecules. These ionizations triggers lightning and cloud
formation. They also ionize pollutants in air which could
be a serious public health problem. Since neutron loses
large fraction of its energy by scattering with hydrogen

nuclei (i.e. protons) , cosmic ray neutrons have been used

for monitoring the near surface and soil moistures.

Near the earth surface, more than 80% of particles are
muons which have been used for imaging hidden objects

in non-destructive way similar to X-ray imaging. Since
muon particles are very penetrating, this technique has

been used for monitoring volcanic activity, nuclear
reactors, cargo containers inspection, and in archaeology.

corgladtateUniverst 3
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Cosmic Ray
Simulation
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Cosmic Ray
Simulation
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Computing Simulation Model
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Computing Simulation Model

Geant4-based simulation program, called ECRS, has been developed.t.d ,
study cosmic ray particle showers in the full range of Earth's atmosphere .

6/14/2019 X. He @ MEPhI
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Computing Simulation Model

Geant4-based simulation program, called ECRS, has been developed.t.d |
study cosmic ray particle showers in the full range of Earth's atmosphere .

— The earth atmosphere is modeled by varying the
density and chemical composition according to
NASA’s atmospheric model (grc.nasa.gov)

— Geomagnetic field (internal and external field) 1s
implemented according to NOAA’s IGRF model

(ngdc.noaa.gov)

6/14/2019 X. He @ MEPhI
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Simulated Event Display

100 GeV primary
proton launched
toward Atlanta, from
1.2 Re in altitude with
full magnetic field
configuration

Negatively charged
particles are 1n red
Positively charged
particles are 1n blue

e D -
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Simulated Event Display

100 GeV primary
proton launched
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1.2 Re in altitude with
full magnetic field
configuration

Negatively charged
particles are 1n red
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particles are 1n blue
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Simulated Event Display

100 GeV primary
proton launched
toward Atlanta, from
1.2 Re in altitude with
full magnetic field
configuration

Negatively charged
particles are 1n red
Positively charged
particles are 1n blue

F
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Implementation of Realistic Geomagnetic Field

‘-1--L A )

.
)

Y &)
v

* External magnetic field * Internal magnetic field
*Based in Tsyganenko model e Based on the Internal Goemagnetic Reference
* Very asymmetric because of solar Field (IGRF) model
wind

* Close to be symmetric
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If There Is No Magnetic Field

One of the design features of the ECRS simulation is the

flexibility of switching on and off the geomagnetic field

X. He @ MEPhI
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One of the design features of the ECRS simulation is the
flexibility of switching on and off the geomagnetic field
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If There is No Magnetic Field

One of the design features of the ECRS simulation is the
flexibility of switching on and off the geomagnetic field

The simulation allows us to systematically explore the geomagnetic field
effect on the cosmic ray shower development in the earth’s atmosphere.

6/14/2019 X. He @ MEPhI
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With Magnetic Field

Incoming
Cosmic rays

6/14/2019 X. He @ MEPhI
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Incoming

Cosmic rays

Latitude (degrees)

With Magnetic Field

e Cosmic rays launched
C 4 GeV = E,p < 5 GeV y
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—| ®m  9GeV = E, <10 GeV
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Incoming
Cosmic rays

Latitude (degrees)

With Magnetic Field
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With Magnetic Field

N
(&)

: § R Cosmic rays launched
Incomlng S col| = scev:ernsron toward Atlanta, GA from
C : L VL] 7 GaV 5 Eyp <8 Gol 1.2 Earth's radii
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Cosmic Ray Flux Variation at Global Scale

Protons

—m— Neutrons

—#— Muons
Electrons

—#— Gammas

—— Other particles
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Cosmic Ray Flux Variation at Global Scale

Protons

—m— Neutrons

—— Muons
Electrons

—#— Gammas

—— Other particles
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Cosmic Ray Flux Variation at Global Scale

Protons §
—=— Neutrons =l
—#— Muons @
Electrons g G g
6000- —#—- Gammas ':é
—

—— Other particles

.
300 350
Longitude (deg)

250

Higher radiation level close to pole regions!
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Novel Cosmic Ray
Detector Development




Portable, low-cost and reliable!

Novel Cosmic Ray
Detector Development




Portable, low-cost and reliable!

Novel Cosmic Ray
Detector Development

GSU group is focusing on developing and building detectors and
Prof. Wei’s group is working on signal readout and power system.
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Cosmic Ray Muon Telescope Prototype

X. He @ MEPhI
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Cosmic Ray Muon Telescope Prototype
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Cosmic Ray Muon Telescope Prototype
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Neutron Bottle: Proof-of-Principle

= [\

v, /"'3- )

Key components: Liquid scintillator, wavelength shifting fiber, glass tube, SIPM

X. He @ MEPhI
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Neutron Detection with Better Design
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Neutron Detection with Better Design

@.12 THRU

@.04 THRU

4-40 UNC-2B Vv .22

X. He @ MEPhI

Sensor Cap (.5in)

Quantity 1

Author: Jonathan He

[ Date July 19, 2016

Scale 2:1

Email: Jonathanheli@yahoo.co
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Neutron Detection with Better Design

@.12 THRU

@.04 THRU

4-40 UNC-2B Vv .22

en 4,_eq4: :
Neutronevent

muon veto top paddle

neutron

muon veto bottom paddle

neutron chl

I

neutron ch2

(b)

Wednesday, May 30, 2018 'PMt' 03:29:26 PM
_ 100 mV/div _/~ (112]3]4) 560 ns 100 ns/div 1.007 GS/s Calib
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Sensor Cap (.5in) Quantity 1
Author: Jonathan He I Date July 19, 2016] Scale 2:1
Email: Jonathanheli@yahoo.com

muon event _ n t

muon veto top paddle

neutron chl

e e

neutron ch?2

(b)

Wednesday, May 30, 2018 'PMt' 03:25:24 PM
_ 100 mV/div _/~ (1]12]3]4) 560 ns 100 ns/div 1.007 GS/s Calib
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Cosmic Ray Muon/Neutron Telescope
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Recent Beam Test at Fermi National Accelerator Laboratory

—— FTBF Status
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Muon Telescope Sees the Beam Structure

Two-Layer Coincidence (2&3)
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& ‘\
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Detector Simulation Study Using GEANT4
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BUILD A GLOBAL
COSMIC RAY NETWORK
FOR STUDYING THE
CORRELATIONS
BETWEEN THE COSMIC
RAY FLUX VARIATIONS
AND THE DYNAMICAL
CHANGES OF THE EARTH
AND SPACE WEATHER.

Understanding and
Protecting the earth for

a livable space for
every walks of life

6/14/2019
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THANK YOU
And
Please Join the Projects
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Working Principle
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Earth’s atmosphere . pecature (°F)
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Earth's atmosphere temperature (°F)
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Tost-of the muons are produced in upper
_~troposphere - lower stratosphere region
[UT-LS]

Change in temperature=> Change in air
density = Muon flux variation
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Determining the Effective Temperature
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Cosmic Rays as Temperature Gauge

Procedure:

51.“ — f(STeff’ SP, 6IN) '
R

[Atmospheric effects] %

OP: Change in air pressure

61y: Neuton Flux variation (1O correct

the solar effects and primary

particle fluctuation) [Extraterrestrial
effects]
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STeff —_ g((SIu, SIN, 6P)

Sunspot number
&) (.-J: e O
©c O O O
Lovoa b bl

CR count rate (%)
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llya G. Usoskin, Living Rev. Solar Phys., 10 (2013)
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Exam ple Effective Temperature at Yakutsk (1980 - 2003)
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Regression was performed and Te# was constructed separately on three different datasets
corresponding to three time periods to compare the results and plotted together.
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LHAASO Cosmic Ray Project in China

CATCHING RAYS

China’s new observatory will
intercept ultra-high-energy y-ray
particles and cosmic rays.

12 wide-
field-of-view
air Cherenkov -
telescopes

80,000 m? surface-
water Cherenkov
detector

!
- w
2= SR = |

5,195 scintillator
detectors

4400 m —

1,171 underground
water Cherenkov tanks
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Nature 543, 300-301 (16 March 2017) | doi:10.1038/543300a
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Ultra High Energy Cosmic Ray Search

In 1939, Pierre Auger and his co-workers have estimated the energy of extensive cosmic ray
shower to be above 1012 eV

Discovery of astronomical events that accelerate the primary cosmic ray particles at energies
of 1020 eV was first detected in 1962 by John Linsley in the Volcano Ranch array in New
Mexico, USA
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Ultra High Energy Cosmic Ray Search

In 1939, Pierre Auger and his co-workers have estimated the energy of extensive cosmic ray
shower to be above 1012 eV

Discovery of astronomical events that accelerate the primary cosmic ray particles at energies
of 1020 eV was first detected in 1962 by John Linsley in the Volcano Ranch array in New

Mexico, USA

In 1995, Pierre Auger Primary cosmic ray | =\ = e =
Project begun, named in TR L
honor of the discoverer of

extensive air showers with a  Particle cascade /i
purpose of tracing high- /i
energy cosmic rays to their
unknown source that will
advance the understanding
of the origin and evolution of e
the universe.
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Heavy-on
Track

6/14/2019

X. He @ MEPhI

48



Heavy-on
Track
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