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2. Quantum Chromodynamics: The Fundamental Description of the Heart of Visible Matter

describe quark and gluon interactions, the emergent 

phenomenon that a macroscopic volume of quarks and 

gluons at extreme temperatures would form a nearly 

perfect liquid came as a complete surprise and has 

led to an intriguing puzzle. A perfect liquid would not 

be expected to have particle excitations, yet QCD is 

definitive in predicting that a microscope with sufficiently 

high resolution would reveal quarks and gluons 

interacting weakly at the shortest distance scales within 

QGP. Nevertheless, the d/s of QGP is so small that there 

is no sign in its macroscopic motion of any microscopic 

particlelike constituents; all we can see is a liquid. To this 

day, nobody understands this dichotomy: how do quarks 

and gluons conspire to form strongly coupled, nearly 

perfect liquid QGP?

There are two central goals of measurements planned 

at RHIC, as it completes its scientific mission, and at the 

LHC: (1) Probe the inner workings of QGP by resolving 

its properties at shorter and shorter length scales. The 

complementarity of the two facilities is essential to this 

goal, as is a state-of-the-art jet detector at RHIC, called 

sPHENIX. (2) Map the phase diagram of QCD with 

experiments planned at RHIC.

This section is organized in three parts: characteriza tion 

of liquid QGP, mapping the phase diagram of QCD by 

doping QGP with an excess of quarks over antiquarks, 

and high-resolution microscopy of QGP to see how 

quarks and gluons conspire to make a liquid.

EMERGENCE OF NEAR-PERFECT FLUIDITY
The emergent hydrodynamic properties of QGP are 

not apparent from the underlying QCD theory and 

were, therefore, largely unanticipated before RHIC. 

They have been quantified with increasing precision 

via experiments at both RHIC and the LHC over the last 

several years. New theoretical tools, including LQCD 

calculations of the equation-of-state, fully relativistic 

viscous hydrodynamics, initial quantum fluctuation 

models, and model calculations done at strong coupling 

in gauge theories with a dual gravitational description, 

have allowed us to characterize the degree of fluidity. 

In the temperature regime created at RHIC, QGP is the 

most liquidlike liquid known, and comparative analyses 

of the wealth of bulk observables being measured hint 

that the hotter QGP created at the LHC has a somewhat 

larger viscosity. This temperature dependence will be 

more tightly constrained by upcoming measurements 

at RHIC and the LHC that will characterize the varying 

shapes of the sprays of debris produced in different 

collisions. Analyses to extract this information are 

analogous to techniques used to learn about the 

evolution of the universe from tiny fluctuations in the 

temperature of the cosmic microwave background 

associated with ripples in the matter density created a 

short time after the Big Bang (see Sidebar 2.3).

There are still key questions, just as in our universe, 

about how the rippling liquid is formed initially in 

a heavy-ion collision. In the short term, this will be 

addressed using well-understood modeling to run 

the clock backwards from the debris of the collisions 

observed in the detectors. Measurements of the gluon 

distribution and correlations in nuclei at a future EIC 

together with calculations being developed that relate 

these quanti ties to the initial ripples in the QGP will 

provide a complementary perspective. The key open 

question here is understanding how a hydrodynamic 

liquid can form from the matter present at the earliest 

moments in a nuclear collision as quickly as it does, 

within a few trillionths of a trillionth of a second.

Geometry and Small Droplets

Connected to the latter question is the question of 

how large a droplet of matter has to be in order for it to 

behave like a macroscopic liquid. What is the smallest 

possible droplet of QGP? Until recently, it was thought 

that protons or small projectiles impacting large nuclei 

would not deposit enough energy over a large enough 

volume to create a droplet of QGP. New measurements, 

however, have brought surprises about the onset of QGP 

liquid production.

Measurements in LHC proton-proton collisions, selecting 

the 0.001% of events that produce the highest particle 

multiplicity, reveal patterns reminiscent of QGP fluid flow 

patterns. Data from p+Pb collisions at the LHC give much 

stronger indications that single small droplets may be 

formed. The flexibility of RHIC, recently augmented by 

the EBIS source (a combined NASA and nuclear physics 

project), is allowing data to be taken for p+Au, d+Au, 

and 3He+Au collisions, in which energy is deposited 

initially in one or two or three spots. As these individual 

droplets expand hydrodynamically, they connect and 

form interesting QGP geometries as shown in Figure 2.9. 

If, in fact, tiny liquid droplets are being formed and 

their geometry can be manipulated, they will provide 
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Through the use of the sPHENIX HCal 
detector technology, we have developed 
novel, low-cost and portable cosmic ray 
telescopes to measure cosmic ray flux 
variations at global scale in real-time.  
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Wheat Price Variation in Correlation with Solar Activity
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Wheat Price Variation in Correlation with Solar Activity

11-year cycle
Solar activity
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Svensmark showed a causal relationship 
between galactic cosmic rays and low 
cloud coverage (< 3.2km) .

N. D. Marsh and H. Svensmark, “Low cloud properties 
influenced by cosmic rays,” Phys. Rev. Lett., vol. 85, pp. 5004–
5007, 2000”
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Svensmark showed a causal relationship 
between galactic cosmic rays and low 
cloud coverage (< 3.2km) .

N. D. Marsh and H. Svensmark, “Low cloud properties 
influenced by cosmic rays,” Phys. Rev. Lett., vol. 85, pp. 5004–
5007, 2000”

Lu showed  a correlation between 
cosmic rays and ozone depletion, 
especially in the polar region over  
Antarctica .

Q.-B. Lu, “Correlation between cosmic rays and 
ozone depletion,” Phys. Rev. Lett., vol. 102, pp. 118 
501–1 – 118 501–4, 2009 “
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Physics Today (Oct 2007) by Bertran Schwarzschild.



6/14/2019 X. He @ MEPhI

Biodiversity on Earth Over the Past 500 Million Years

�16

Physics Today (Oct 2007) by Bertran Schwarzschild.



6/14/2019 X. He @ MEPhI �17



6/14/2019 X. He @ MEPhI �17

4000-year old pyramid



6/14/2019 X. He @ MEPhI �17

4000-year old pyramid
Muon Tomography
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Rays
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Hess with his balloon

• Discovered by Victor Hess in 1912 during a balloon flight with friends. 
• Vicrtor Hess received Nobel Prize in 1936 for this discovery. 
• The study of cosmic ray particles in 1930’s and 40’s inspired and built the 

foundation of exploring the colorful subatomic world. 
• Still today, possibly in many years to come, measurements of the most 

energetic cosmic ray showers are very active around the world, e.g., P. Auger 
LARSO, etc. for understanding the origin of these particles and their 
implications to the evolution of our universe.
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Trip to Japan in 2015 

On runway

In air

To Switzerland in 2018 
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Trip to Japan in 2015 

On runway

In air

To Switzerland in 2018 

On average, one receives a factor of 20 more 
radiation dose from cosmic rays in flight in 

comparison to staying on surface! 
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First Hand Measurement of Cosmic Ray 
Radiation Level at Flight Altitude Since 2015
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Trip to Japan in 2015 

On runway

In air

To Switzerland in 2018 

On average, one receives a factor of 20 more 
radiation dose from cosmic rays in flight in 

comparison to staying on surface! Verify Victor Hess’s observation > 100 years ago 
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Outline
• Cosmic ray shower simulation


• Cosmic ray detector development


• Cosmic ray applications
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Applications of Cosmic Ray Flux Measurements

Xiaochun He

Dynamical 
monitoring of 

the upper 
atmosphere 
properties

Space 
weather 

monitoring

Ionization of 
atmospheric 
air molecules 

and health

Cosmic ray 
muon and 
neutron 

tomography

STEM 
training

It has been well known for more than half a century 
that solar activity has a strong influence of cosmic 

ray flux reaching to the earch (anti-correlation), one 
could use cosmic ray flux measured at the surface of 

the earth to monitor the space weather and solar 
activity.  

Since most of the cosmic ray showers are occurring 
between the upper troposphere and lower 

stratosphere, cosmic ray flux measurement at the 
earth surface around the world simultaneously could 

help to determine the dynamical changes of air density 
in this region at global scape in real-time. 

Secondary cosmic ray shower particles (electrons, gamma 
rays, muons, neutrons) are ionizing the atmospheric air 
molecules. These ionizations triggers lightning and cloud 
formation. They also ionize pollutants in air which could 
be a serious public health problem. Since neutron loses 
large fraction of its energy by scattering with hydrogen 

nuclei (i.e. protons) , cosmic ray neutrons have been used 
for monitoring the near surface and soil moistures.

Near the earth surface, more than 80% of particles are 
muons which have been used for imaging hidden objects 
in non-destructive way similar to X-ray imaging. Since 

muon particles are very penetrating, this technique has 
been used for monitoring volcanic activity, nuclear 

reactors, cargo containers inspection, and in archaeology.

Created 2/2019
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Geant4-based simulation program, called ECRS, has been developed to 
study cosmic ray particle showers in the full range of Earth's atmosphere
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Geant4-based simulation program, called ECRS, has been developed to 
study cosmic ray particle showers in the full range of Earth's atmosphere

– The earth atmosphere is modeled by varying the 
density and chemical composition according to 
NASA’s atmospheric model (grc.nasa.gov)

– Geomagnetic field (internal and external field) is 
implemented according to NOAA’s IGRF model 
(ngdc.noaa.gov)
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100 GeV primary 
proton launched 
toward Atlanta, from 
1.2 Re in altitude with 
full magnetic field 
configuration 

Negatively charged 
particles are in red 
Positively charged 
particles are in blue 

Neutral particles are in 
green
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100 GeV primary 
proton launched 
toward Atlanta, from 
1.2 Re in altitude with 
full magnetic field 
configuration 
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Implementation of Realistic Geomagnetic Field 
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•External magnetic field 
•Based in Tsyganenko model 
•Very asymmetric because of solar 
wind

• Internal magnetic field 
• Based on the Internal Goemagnetic Reference 

Field (IGRF) model 
• Close to be symmetric
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One of the design features of the ECRS simulation is the 
flexibility of switching on and off the geomagnetic field 
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One of the design features of the ECRS simulation is the 
flexibility of switching on and off the geomagnetic field 

The simulation allows us to systematically explore the geomagnetic field 
effect on the cosmic ray shower development in the earth’s atmosphere. 
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Cosmic rays
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no field

L O W  E N E R G Y  P R I M A R I E S  A R E  
D E F L E C T E D  AWAY  F R O M  T H E I R  

O R I G I N A L  D I R E C T I O N  

Incoming 
Cosmic rays
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Higher radiation level close to pole regions! 
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Portable, low-cost and  reliable!

GSU group is focusing on developing and building detectors and 
Prof. Wei’s group is working on signal readout and power system. 
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Cosmic Ray Muon Telescope Prototype
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Cosmic Ray Muon Telescope Prototype
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Neutron Bottle: Proof-of-Principle

Key components: Liquid scintillator, wavelength shifting fiber, glass tube, SiPM
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Cosmic Ray Muon/Neutron Telescope
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Recent Beam Test at Fermi National Accelerator Laboratory
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sPHENIX MVTX beam test GSU muon telescope test
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Muon Telescope Sees the Beam Structure

�37

No particle beams from accelerator

4-second beam spill in every minute
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Detector Simulation Study Using GEANT4   
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B U I L D  A  G L O B A L  
C O S M I C  R AY  N E T W O R K  
F O R  S T U D Y I N G  T H E  
C O R R E L AT I O N S  
B E T W E E N  T H E  C O S M I C  
R AY  F L U X  VA R I AT I O N S  
A N D  T H E  D Y N A M I C A L  
C H A N G E S  O F  T H E  E A RT H  
A N D  S PA C E  W E AT H E R .

Understanding and 
Protecting the earth for 

a livable space for 
every walks of life 
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THANK YOU 
And  

Please Join the Projects
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Cosmic Data for Weather Monitoring
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Pfotzer 
1936

• Most of the muons are produced in upper 
troposphere - lower stratosphere region 
[UT-LS]

• Change in temperatureà Change in air
densityàMuon flux variation



6/14/2019 X. He @ MEPhI

Determining the Effective Temperature
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⍺T =Temperature Coefficient:

T(x): Temperature at atmospheric depth X

W(x): Weight of atmospheric depth X
depends on particle production 
at that depth

15Km

0Km

20Km
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Cosmic Rays as Temperature Gauge
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Ilya G. Usoskin, Living Rev. Solar Phys., 10 (2013)

!"#$$ = &(!(), !(+, !,)
Procedure:

!"# = %(!'(%%, !*, !"+)

!"+:+(./01	34.5	67897/901	(to correct 
the solar effects and  primary 
particle fluctuation)   [Extraterrestrial 
effects]

[Atmospheric effects]
!*: Change in air pressure
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Regression was performed and Teff was constructed separately on three different datasets 
corresponding to three time periods to compare the results and plotted together.

Example
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LHAASO Cosmic Ray Project in China
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Ultra High Energy Cosmic Ray Search
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In 1939, Pierre Auger and his co-workers have estimated the energy of extensive cosmic ray 
shower to be above 1012 eV
Discovery of astronomical events that accelerate the primary cosmic ray particles at energies 
of 1020 eV was first detected in 1962 by John Linsley in the Volcano Ranch array in New 
Mexico, USA
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Ultra High Energy Cosmic Ray Search

�47

In 1995, Pierre Auger 
Project begun, named in 
honor of the discoverer of 
extensive air showers with a 
purpose of tracing high-
energy cosmic rays to their 
unknown source that will 
advance the understanding 
of the origin and evolution of 
the universe.

In 1939, Pierre Auger and his co-workers have estimated the energy of extensive cosmic ray 
shower to be above 1012 eV
Discovery of astronomical events that accelerate the primary cosmic ray particles at energies 
of 1020 eV was first detected in 1962 by John Linsley in the Volcano Ranch array in New 
Mexico, USA
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CR	and	DNA	Damage

http://www.fukuleaks.org/web/?p=14602

Imaging	Core	of	Nuclear	Reactor	at	Fukushima		


